If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=10+6
We move all terms to the left:
2x^2-(10+6)=0
We add all the numbers together, and all the variables
2x^2-16=0
a = 2; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·2·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*2}=\frac{0-8\sqrt{2}}{4} =-\frac{8\sqrt{2}}{4} =-2\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*2}=\frac{0+8\sqrt{2}}{4} =\frac{8\sqrt{2}}{4} =2\sqrt{2} $
| m÷3=2 | | 3(5g-7)-8=0 | | 4/x-1=10/3x-1 | | 5/2y-1/2=3/4 | | 3x=3.67 | | 8m-24-2m-4=20 | | -20=5(2x+1) | | 2(f-9)=-12 | | 3z/10+2=3 | | x=1.6(-230) | | z/10-3=-4 | | 2(4s+8)=112 | | a/5+6=9 | | (u-4)8=72 | | (q-9)5=50 | | (e+3)2=16 | | (-6-8)-(2p-6)=0 | | x=x10-149 | | 3-9h-2+7h=0 | | p-0.75=0.375+0.5p | | 200=15x^2 | | x-18/×=7 | | 9(8f+3)-7f=0 | | 7x=2x=25 | | 3=-3x+3- | | 2b-3b+9+5=0 | | 7^x-4=16^8x | | 9x-8=6x=2 | | -6q+7-2+4q=0 |